
Am. J. Hum. Genet. 61:317–328, 1997

Identification and Analysis of Mutations in the Wilson Disease Gene
(ATP7B): Population Frequencies, Genotype-Phenotype Correlation,
and Functional Analyses

Anjali B. Shah,1 Igor Chernov,2 Hong Tao Zhang,2 Barbara M. Ross,2 Kamna Das,2

Svetlana Lutsenko,4 Enrico Parano,5,6 Lorenzo Pavone,5 Oleg Evgrafov,7
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Summary Introduction
Wilson disease (WD) is an autosomal recessive disorder

Copper is an essential trace element, acting as a cofactorcharacterized by toxic accumulation of copper in the liver
for a number of proteins, including cytochrome c oxi-and subsequently in the brain and other organs. On the
dase, dopamine b hydroxylase, superoxide dismutase,basis of sequence homology to known genes, the WD gene
peptide a amidating enzyme, lysyl oxidase, tyrosinase,(ATP7B) appears to be a copper-transporting P-type
and ceruloplasmin. Copper-dependent enzymes are re-ATPase. A search for ATP7B mutations in WD patients
quired for diverse processes of oxidative metabolism,from five population samples, including 109 North Ameri-
including respiration, free-radical detoxification, neuro-can patients, revealed 27 distinct mutations, 18 of which
transmitter synthesis, and maturation of connective tis-are novel. A composite of published findings shows missense
sue, and also for iron uptake (Yuan et al. 1995). Themutations in all exons—except in exons 1–5, which encode
importance of copper homeostasis can be seen in thethe six copper-binding motifs, and in exon 21, which spans
devastating effects of heritable human disorders that dis-the carboxy-terminus and the poly(A) tail. Over one-half
rupt the normal processes of copper metabolism. Inof all WD mutations occur only rarely in any population
Menkes disease (MNK) and occipital horn syndromesample. A splice-site mutation in exon 12 accounts for 3%
(OHS), reduced copper levels in most tissues diminishof the WD mutations in our sample and produces an in-
the activity of numerous copper-containing proteins,frame, 39-bp insertion in mRNA of patients homozygous,
producing symptoms such as neurological degenerationbut not heterozygous, for the mutation. The most common
and connective-tissue defects. In contrast, Wilson dis-WD mutation (His1069Glu) was represented in Ç38% of
ease (WD) and Indian childhood cirrhosis arise fromall the WD chromosomes from the North American, Rus-

sian, and Swedish samples. In several population cohorts, the toxic accumulation of copper primarily in the liver.
this mutation deviated from Hardy-Weinberg equilibrium, Copper-dependent enzyme activities remain basically
with an overrepresentation of homozygotes. We did not find unaffected, with the notable exception of ceruloplasmin,
a significant correlation between His1069Glu homozygosity which is dramatically reduced in the majority of WD
and several clinical indices, including age of onset, clinical patients. Copper toxicity results in tissue and organ
manifestation, ceruloplasmin activity, hepatic copper levels, damage, particularly in the liver and brain (Petrukhin
and the presence of Kayser-Fleischer rings. Finally, and Gilliam 1994), presumably owing to the generation
lymphoblast cell lines from individuals homozygous for His- of metal dependent oxyradicals and to metal ion antago-
1069Glu and 4 other mutations all demonstrated signifi- nism (copper competing with other metal ions for the
cantly decreased copper-stimulated ATPase activity. same biochemical sites) (Jungmann et al. 1993).

The recent molecular cloning of highly homologous
genes, which when defective cause MNK (Chelley et al.
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sites and by signature features (a unique transmembrane ment of the rate of paraphenylenediamine oxidation in
a Perkin-Elmer UV/VIS spectrophotometer, model 559A[Tm] pattern and two unique amino acid motifs, CPC

and SEHPL) that constitute a new subgroup of heavy (Morell et al. 1968), and by polarized atomic absorption
spectrophotometry using a Hitachi Z-8270 spectropho-metal–binding ATPases. The MNK gene (ATP7A) is

expressed in all tissues except the adult liver (Vulpe et tometer with a graphite furnace, respectively.
al. 1993). Disruption of protein function apparently

Haplotype Analysisleads to trapping of copper in the intestinal mucosa,
kidney, and connective tissues, accompanied by the fail- Individuals with confirmed diagnosis of WD, together

with the available parents and unaffected siblings, wereure to distribute copper to other tissues (Vulpe et al.
1993). The WD gene (ATP7B) is expressed most abun- genotyped with six microsatellite markers that surround

and flank the WD locus. The oligonucleotide primersdantly in the liver, where disruption of protein function
reduces or prevents both the elimination of excess cop- and PCR amplification conditions for markers

D13S295, D13S296, D13S297, D13S298, D13S301,per from the hepatocyte into bile and the loading of
apoceruloplasmin with copper to form ceruloplasmin. and D13S133 have been described elsewhere (Petrukhin

et al. 1993). Haplotypes were determined for affectedWe report a preliminary characterization of the WD
gene that includes the identification of 27 disease muta- individuals after the derivation of phase for the parental

genotypes. All patient samples showing a unique homo-tions, 18 of which have not been described elsewhere.
Mutation frequencies were determined, by reverse dot- zygous haplotype were analyzed further by direct DNA

sequencing.blot hybridization (RDBH) or by detailed haplotype
analysis, in five geographically diverse clinical samples.

SSCP AnalysisSeveral mutations were analyzed in greater detail, in-
cluding the most common WD mutation, His1069Glu For a subset of compound heterozygotes, all 21 exons

of the WD gene were PCR amplified and were subjected(which disrupts the canonical SEHPL motif), a relatively
rare splice-site mutation, and several missense mutations to mutation analysis by SSCP analysis (Orita et al.

1989). For the majority of exons, amplification was per-that lead to reduced copper-stimulated ATPase activity
in lymphocytes of WD patients. formed with the set of intronic primers described else-

where (Petrukhin et al. 1994). In addition, several new
intronic and exonic primer sets were designed, to im-Subjects, Material, and Methods
prove exon amplification or the efficiency of mutation

Subjects detection, and included the following: 5�-CGCAAC-
TTTGAATCATCCGT-3� and 5�-AACGCGGGGAGG-This study was approved by the appropriate institu-

tional review board (IRB 2094), and appropriate in- AAAATCCT-3�, for exon 1; 5�-AGAAGCTGGGAT-
GTTGTAGAAAATATTAGG-3� and 5�-AATGGAG-formed consent was obtained from the human subjects.

The Russian cohort, drawn from 18 unrelated families, CTGACACAGGACTG-3�, 5�-ATGGGCTTCGAGGC-
CAGGAT-3� and 5�-TGGTTAGCAGAAGATAAA-consisted of 66 individuals and was comprised of 24

WD patients, 36 parents, and 6 unaffected siblings. The GGTCTCTT-3�, 5�-CCCAAAGAGACCTTTATCTTC-
TGC-3� and 5�-AATTCCCAGGTGGAAGTGCC-American cohort, drawn from 119 unrelated families,

consisted of 317 individuals and was comprised of 128 3�, and 5�-TGAAGGCATGATCTCCCAAC-3� and 5�-
CCTATACCACCATCCAGGAG-3�, for exon 2; 5�-WD patients, 138 parents, and 51 unaffected siblings.

The families in the American sample were from 13 states AAATGTCCTTATGTGATTAGAGTTCTGG-3� and
5�-GGCTTTTCTCTCAATGTGAAATAGTAAA-3�,in the U. S. or from Puerto Rico (7 families), Greece (1

family), or India (1 family). In 13 of the 128 families, for exon 13; and 5�-GAAATAACCACAGCCTCT-
TTTG-3� and 5�-AAGGAAGGCAGAAGCAGAAG-3�,both parents were Jewish. The Sicilian sample included

11 WD patients, 12 parents, two paternal grandparents, for exon 16. Individual PCR reactions contained 0.2–
1.0 mg genomic DNA; 50 pmol each of forward primerand 10 unaffected siblings, from a total of 9 unrelated

families. The Swedish sample included 26 affected indi- and backward primer; 50 mM Tris (pH 8.3); 1.5 mM
MgCl2; 50 mM KCl; 1 mM each of dATP, dTTP, andviduals from 22 unrelated families. These families re-

cently have been described elsewhere (Waldenström et dGTP; 12.5 mM dCTP; 2.5 mCi [a32P]-dCTP; and 0.75
units Taq polymerase (Perkin Elmer Cetus), for a totalal. 1996). The Costa Rican cohort was comprised of 15

unrelated families, 4 of which included more than one volume of 25 ml. Amplification was performed in an MJ
Research PTC-100 Programmable Thermal Controller,affected sibling, for a total of 19 WD patients, 24 par-

ents, 11 sibs, and 15 children. Diagnosis of WD in the by use of a modified protocol of touchdown PCR (Don
et al. 1991), for which primer annealing temperaturesAmerican families was based on the criteria described

by Scheinberg and Sternlieb (Scheinberg and Sternlieb were decreased stepwise from 68�C to 55�C. In order to
enhance the detection of sequence alterations, amplified1984). Clinical indices such as ceruloplasmin activity

and hepatic copper levels were determined by measure- products exceeding a length of 240 bp were digested
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with the restriction enzymes listed as follows: MaeII for thesizer and then were bound to nylon membranes by
use of a modification of the protocol used by Zhang etexon 2; HpaII for exons 3, 5, and 11; MboI for exon 4;

FokI for exons 8, 14, 15, 16, and 19; MseI for exon 9; al. (1991). The terminal amino groups were introduced
during the final coupling step, with the Aminolink 2AvaII for exon 10; AluI for exon 15; MscI for exon 13;

PstI for exon 17; and SacI for exon 18. The samples reagent (ABI). A CE-phosphoramidate (Clontech) that
incorporates an 18-atom arm was used to introduce twothen were diluted with 4 vol of a solution of 10 mM

EDTA and 0.1% SDS. Two-fifths of this dilution mix- spacer groups immediately prior to addition of the 5�
amino group. Oligonucleotides containing aminolinkture then was diluted with 1 vol of loading buffer (99%

formamide, 0.5 mM EDTA, and 0.1% each of xylene (Al), spacer groups (Sp), and disease-specific mutations
(underlined in the following list) were designed for thecyanol and bromophenol blue), was denatured at 95�C

for 5–10 min, and was electrophoresed through 6% His1069Gln mutation at exon 14 (table 1), as shown in
the following examples: 5�-Al-Sp-Sp-GTGAACACC-mutation-detection-enhancement gels (AT Biochem), at

5 W either at room temperature for 7–10 h or at 4�C CCTTGGG-3� (wild-type oligonucleotide, sense strand);
5�-Al-Sp-Sp-GTGAACAACCCTTGGG-3� (mutant oli-for 7–15 h. The gels subsequently were dried and ex-

posed to film, at room temperature for 1–5 d. When gonucleotide, sense strand); 5�-Al-Sp-Sp-CCCAAGG-
GGTGTTCAC-3� (wild-type oligonucleotide, antisenseanalyzed, patient samples exhibiting mobility shifts

relative to normal samples were allocated for direct se- strand); and 5�-Al-Sp-Sp-CCCAAGGGTTGTTCAC-3�
(mutant oligonucleotide, antisense strand).quencing.

Exon Amplification and Sequencing Restriction-Enzyme Analysis
When haplotype analysis indicated that samples were The ArG transition at the exon 12 splice acceptor

homozygous for a WD mutation, exonic DNA was am- site creates an NlaIII restriction-endonuclease recogni-
plified and directly sequenced. Select heterozygous sam- tion site. Since the original primers for exon 12 amplifi-
ples also were sequenced. PCR amplification was per- cation produced a fragment with additional NlaIII sites,
formed in reaction volumes of 200 ml, containing 1.5 mg new primers were designed (5�-TGGTCTTGGTGT-
genomic DNA, 40 pmol of the forward and backward TTTATTTTCAT-3� and 5�ATGATGATGATAAAT-
primers flanking the exon of interest, 2.5 mM dNTPs, GGGACAAAA-3�) to amplify a product of 87 bp that
50 mM KCl, 1.5 mM MgCl2, 10 mM Tris (pH 8.3), would be digested once with NlaIII only if the substitu-
and 10 units Taq polymerase (Perkin Elmer Cetus), ac- tion was present. NlaIII reactions were performed at
cording to the conditions described above. Products 37�C for 2 h by use of 25–50 ng DNA, 50 mM KOAc,
were purified by electrophoresis through a 2% low-melt- 20 mM Tris-acetate, 10 mM MgOAc, 1 mM DTT, 100
ing-point agarose gel (Boehringer Mannheim). The am-

mg BSA/ml, and 1 unit of enzyme. All restriction prod-
plification bands were excised and purified over Qiagen ucts were analyzed on a Nusieve 4% agarose gel.
tip-20 columns (Qiagen) or by a phenol/chloroform extrac-
tion method (Maniatis et al. 1989). Sequence analysis

Reverse-Transcriptase (RT) PCRof the polyadenylation site involved the use of primers
To assay for the ArG transition at the exon 12 splice5�-GATGGTCAAAGTGTAAGGAGTTTTTT-3� and

acceptor site, poly(A/) RNA (mRNA Purification Kit,5�-GTGCCTCACAGAAGCCCTC-3�, in the amplifica-
Pharmacia Biotech) was prepared from lymphoblast cul-tion reactions described above. DNA sequencing was
tures from control individuals and from WD-affectedperformed by use of the Taq DyeDeoxy Terminator Cy-
individuals who were either heterozygous or homozy-cle Sequencing Kit (ABI), in accordance with the suppli-
gous for the putative mutation. First-strand cDNA waser’s instructions. The reactions were analyzed on an ABI
synthesized by use of random hexamers as primer (Ad-model 373A automated sequencer. Nucleotide changes
vantage RT for PCR kit, Clontech). By use of the samein heterozygous individuals were detected reliably by
amplification programs mentioned previously formanual inspection of characteristic double peaks. Detec-
RDBH, PCR was performed in reaction volumes of 50tion of exon 4 deletion/insertion mutations required the
ml containing Ç0.1 mg lymphoblast poly(A/) RNA or 1synthesis of internal primers 5�-TATGACCCAGAG-
mg placenta or liver poly(A/) RNA (Clontech), 10 pmolGTCATCCA-3� and 5�-ATGAACTGAGCTATC-
of the forward primer flanking exon 11 and of the back-TCGAG-3�.
ward primer flanking exon 14 (Petrukhin et al. 1994),

RDBH 2.5 mM dNTPs, 50 mM KCl, 1.5 mM MgCl2, 10 mM
Tris (pH 8.3), and 2.5 units Taq polymerase (PerkinWith a reliability of ú90% (data not shown), we used
Elmer Cetus). Two microliters of template from this re-RDBH to determine the population frequencies of indi-
action were used for another round of amplification us-vidual mutations. Amino-labeled oligonucleotides con-
ing nested primers flanking exons 11 and 13 (Petrukhintaining seven WD mutations (table 1) were synthesized

by use of an Applied Biosystems model 392 DNA syn- et al. 1994). Products were analyzed on a 2% low-melt-

/ 9a30$$au39 08-05-97 18:29:10 ajhgal UC-AJHG



320 Am. J. Hum. Genet. 61:317–328, 1997

Table 1

Frequencies of WD Mutations in Various Ethnic Populations

AFFECTED MUTATION FREQUENCY (%), BY POPULATIONb

REGION OR

EXON MUTATIONa CODON CHANGE North American Russian Sicilian Swedish

14 His1069Gln SEHPL motif 83/218 (38) 14/36 (39) 0/16 (0) 16/42 (38)
15 Frameshift CCC3402rCC 7/215 (3.3) 9/48 (19) 0/16 (0) 1/42 (2.4)
16 Frameshift T3552rTT 1/216 (.5) 0/48 (0) 0/16 (0) 0/42 (0)
17 Asp1222Tyr ATP binding site 1/214 (.5) 2/48 (4.1) 0/18 (0) 0/42 (0)
18 Asn1270Ser Hinge domain 2/198 (1) 0/40 (0) 2/16 (12.5) 0/42 (0)
8 Frameshift C2304rCC 6/198 (3) 2/48 (4.1) 0/16 (0) 0/42 (0)
7 Frameshift 7-bp deletion 0/198 (0) 0/48 (0) 0/16 (0) 0/42 (0)

a Mutations reported elsewhere (Tanzi et al. 1993; Bull et al. 1993) are underlined.
b Expressed as the number of chromosomes containing a particular mutation divided by the total number of chromosomes.

ing-point agarose gel and were recovered (Qiaex II, Qia- haplotype were analyzed by either SSCP analysis or by
direct DNA sequencing. This process allowed us to iden-gen) for sequencing.
tify 25 disease-specific mutations (table 2) and 21 poly-

Functional Assay for Mutant WD Protein morphisms (table 3), within the WD gene.
Cu2/-dependent ATPase activity was measured from Of the 25 putative mutations detected in our sample,

crude membranes prepared from lymphoblastoid cell 5 are small insertions/deletions (leading to frameshift
lines derived from four patients with different WD muta- mutations), 16 are missense mutations, 2 are nonsense
tions as well as from a control individual. Crude mem- mutations, and 2 affect splice-site sequences. For all mu-
branes were obtained by hypotonic lysis of the frozen tations, the parent samples (when available) were shown
cells in a buffer (10 mM Tris-HCl [pH 8.0], 0.2 mM to be heterozygous for the disease mutation. Among the
DTT, and 0.1 mM phenylmethylsulfonyl fluoride), re- frameshift mutations, one results from a single thymi-
moval of nuclei pellet (8,000 g for 10 min), and collec- dine nucleotide deletion at nucleotide position 845
tion of membrane pellets by high-speed centrifugation within the third copper-binding motif. A Middle Eastern
(100,000 g for 60 min). Membrane pellets were sus- WD patient was found to be homozygous for this muta-
pended in Tris/EDTA/MgCl2 buffer containing 1 mM tion, and both of the patient’s parents were heterozygous
sodium azide and 100 mM ouabain (Lopez de Castro for the mutation, as was the patient’s first cousin. Inter-
1984). Protein concentrations were adjusted by dilution, estingly, a single cytosine nucleotide deletion at position
and samples containing a total of 5 mg of protein were 846 had been reported in another Middle Eastern WD
preincubated with 150 mM ZnSO4. g-[32P]-ATP hydroly- individual in a previous study (Thomas et al. 1995).

Another frameshift mutation results from a 2-bp dele-sis was measured in the presence or the absence of 10.5
tion at amino acid position 4092 within the penultimatemM Cu2/. Sodium azide, ouabain, and zinc sulfate were
exon, which encodes a predicted Tm loop. We suspectused to inhibit endogenous non–copper stimulated AT-
that such a mutation would affect the ion-transportingPase activity. Copper-stimulated ATPase activity was
capabilities of the WD protein. This region is highlycalculated as a difference between two reactions (plus
conserved in eukaryotes and in prokaryotes; studiescopper and minus copper) after 30 min incubations at
show that the analogous Tm segment of the non–heavy37�C. Four independent experiments were performed
metal–transporting P-type ATPases contains a numberfor each membrane preparation.
of residues that are critical for cation binding and trans-
location (Andersen and Vilsen 1995).Results

Three of the putative missense mutations produce rel-
Mutation Detection atively conservative amino acid substitutions at posi-

Haplotype analysis was performed on a total of 141 tions that are highly conserved among eukaryotic and
WD-patient lymphocyte DNA samples, by use of six prokaryotic copper-transporting ATPases. In one case,
microsatellite markers that flank the WD locus (see Sub- a GrT transversion at amino acid position 1035 alters a
jects, Material, and Methods). Patient DNA samples highly conserved glycine residue to a hydrophobic valine
characterized by two identical copies of a novel haplo- residue, in the phosphorylation domain (table 2).
type (homozygotes) were analyzed by direct DNA se- A highly conserved leucine residue at amino acid posi-
quencing, as described in Subjects, Material, and Meth- tion 795 within the fourth Tm loop was replaced by

phenylalanine, in an Italian WD patient heterozygousods. Those samples containing at least one novel
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Table 2

Mutations in the WD Gene

Frequencyb Effect(s) on Protein
Mutation Patient Ethnicitya (%) Exon Gene Region Function or Structure

Deletion:
845delT Middle Eastern 2 2 Third copper-binding Frameshift

domain
3472del11 (GGTTTAACCAT) Polish õ1 16 Second cytoplasmic loop Frameshift
1340del4 (AAAC)c Czech õ1 3 Between the fourth and Frameshift

fifth copper-binding
domains

4092del2 (GT) British õ1 20 Tm 7 Frameshift
2304insC Russian/American 2.6 8 Tm 4 Frameshift

Missense:
Gly1186Cys Jewish õ1 17 Second cytoplasmic loop Change in tertiary

structure
His1069Gln Polish/Swedishd 37 14 SEHPL motif Disrupts ATP binding
Arg778Trp American õ1 8 Tm 4 Affects copper transport
Trp1353Arg Irish õ1 20 Tm 7 Affects copper transport
Gly869Arg Anglo Saxon õ1 11 Phosphatase domain Disrupts phosphatase

activity
Met645Arg Jewish õ1 6 Sixth copper-binding Affects copper transport

domain to Tm 1
Leu708Pro American õ1 8 Tm 2 Affects copper transport
Gly1266Val American õ1 18 Hinge domain Affects hinge domain
Gly626Ala Jewishe õ1 6 Sixth copper-binding Affects copper transport

domain to Tm 1
Asn1270Ser Costa Ricanf 7 18 Hinge domain Affects hinge region
Asp1222Tyr Russian õ1 17 ATP binding site Disrupts ATP binding
Leu795Phe Italian õ1 9 Tm 4 to the transduction Affects copper transport

domain
Gly710Ser Italian/Middle Easterng õ1 8 Tm 2 Affects copper transport
Arg1322Pro Anglo Saxon 2 19 Tm 7 Affects copper transport
Glu1064Ala Jewish 1 14 Proximal to SEHPL motif Disrupts ATP binding
Gly1035Val Japanese õ1 14 Phosphorylation domain Affects phosphorylation

Nonsense:
Trp779Stop Anglo Saxonh õ1 8 Tm 4 Truncates protein
Arg1319Stop British õ1 19 Tm 7 Truncates protein

Splice site:
AGrGG Puerto Rican/British 3 12 3� acceptor Cryptic-site usage; exon

skipping
AGrGG Sicilianj õ1 19 3� acceptor Cryptic-site usage; exon

skippingk

a Refers to the individual in whom the initial mutation was detected.
b Refers to the entire clinical sample in this study (see Material and Methods) and was determined by use of a combination of mutation

detection and identification of common haplotypes.
c Also could be designated as 1339del4 (CAAA). Ambiguity results from the nature of the sequence surrounding the deletion.
d Mutation was identified previously in the following populations: American and Russian (Petrukhin et al. 1993; Tanzi et al. 1993); German,

French, British, and Eastern European (Thomas et al. 1995); continental Italian, Turkish, and Albanian (Figus et al. 1995); Dutch (Houwen
et al. 1995); and northern European (Waldenström et al. 1996).

e Mutation was identified previously in Sardinian, continental Italian, and Turkish populations (Figus et al. 1995).
f Mutation was identified previously in a Sicilian population (Tanzi et al. 1993) and in continental Italian and Turkish populations (Figus et

al. 1995).
g Mutation was identified previously in a Kurdish population (Waldenström et al. 1996).
h Mutation was identified previously in a northern European population (Waldenström et al. 1996).
i Mutation was identified previously in a continental Italian population (Figus et al. 1995) and in a British population (Thomas et al. 1995).
j Mutation was identified previously in a continental Italian population (Figus et al. 1995).
k Effects are speculative, since this mutation has not been analyzed by RT-PCR.
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Table 3 viduals from the American sample, result from a GrA
transition at amino acid position 2337 and a CrT tran-

Polymorphisms in the WD Gene
sition at amino acid position 3957, respectively. The
population frequencies of the newly identified mutationsCodon Amino

Polymorphisma Change Acid(s) Exon were estimated by restriction-enzyme analysis, by haplo-
type-frequency analysis, or by RDBH (tables 1 and 2).

C1366G CTGrGTG LeurVal 3
Transcriptional Assay for a WD Splice-Site MutationA2495G AAGrAGG LysrArg 10

C(05)T . . . . . . 17 To determine whether the ArG transition in the exon
T3419C GTCrGCC ValrAla 16 12 splice acceptor site alters the pattern of WD gene
C3498T AGCrAGT Ser 16

expression, lymphoblast poly(A/) RNA from WD pa-T(07)A . . . . . . 16
tients who were either heterozygous or homozygous forT3399C CTTrCTC Leu 15

A2855G AAArAGA LysrArg 12 the substitution was isolated. The transcriptional assay
A287C GACrGGC AsprGly 2 is illustrated in figure 1a. As shown in figure 1b, hetero-
T1216G TCTrGCT SerrAla 2 zygous and normal individuals produced the full-length
G1336C GTGrCTG ValrLeu 3

326-bp band, whereas the individual homozygous forC(053)A CCCrACC . . . 4
this splice-site mutation produced a 365-bp fragmentC1878T GGCrGGT Ser 6

T2379N GCTrGCN Ala 9 along with the 192-bp alternative transcript (see the leg-
G2973A ACGrACA Thr 13 end of fig. 1). By using DNA sequence analysis, we
C(9)G CTCrGTC . . . 19 showed that the 365-bp RT-PCR product contains an
C(35)T TCCrTTC . . . 11

in-frame 39-bp insertion derived from the recognitionC(40)T CTTrTTT . . . 11
of a cryptic splice site at the 3� end of intron 11. TheT(49)C . . . . . . 9

T(13)C CTTrCTC . . . 19 first 7 bp of the cryptic splice site is identical to a wild-
A(074)C ACGrCCG . . . 5� UTR type acceptor site and is followed by a pyrimidine tract
C3548G GCTrGGT AlarGly 16 (fig. 1c). This mutation produces 13 additional amino
A2305G ATGrGTG MetrVal 8

acids (VVISHGLGVLFSW) in the region between theG3381A CTGrCTA LeurLeu 15
transduction motif and the fifth Tm region. We found

a Nucleotide positions are reported with nucleotide-position 1 corre- no evidence for low levels of full-length transcript in the
sponding to nucleotide A of the initiating codon ATG. Numbers in homozygous individual.
parentheses indicate positions within an intron, relative to the intron/ We presume that the 13–amino acid insert is indeed
exon boundary, with negative values corresponding to the distance,

the disease mutation, since no other alterations werein bp, from the splice acceptor site of an exon and with positive values
detected in the remaining 20 exons and the intron/exoncorresponding to the distance, in bp, from the splice donor site of an

exon. junctions nor was this splice-site mutation detected in
100 control individuals. DNA sequencing of the PCR-
amplification products also showed that the 192-bp
band from the homozygous individual and the 192-bp

for this mutation. The haplotype associated with this
and the 326-bp bands from the heterozygous and nor-

mutation has been detected in only one other individual,
mal individuals are identical to the full-length and alter-

from Sicily. Yet another missense mutation leads to an
natively spliced products characteristic of controls. The

asparagine-to-serine substitution at amino acid position
larger bands (ú370 bp) seen in the normal individual

1270 within the hinge domain. The mutation, previously
N1 were observed in other control lymphoblasts, in liver

described for our Sicilian sample (Tanzi et al. 1993),
and placental poly(A/) RNA, and in a construct con-

accounts for 61% of all WD mutations in a sample of
taining the full-length WD cDNA (data not shown).

15 families from Costa Rica.
DNA sequencing showed that the larger band consisted

Two mutations consist of ArG transitions at the in-
of wild-type sequences identical to the 326-bp tran-

variant 02 positions of splice acceptor sites. One muta-
script, suggesting that these bands arise from concate-

tion, present in the homozygous or the heterozygous
merizaton of PCR products and that the cryptic splice

state in four individuals who were of either Puerto Rican
site normally does not compete with the normal splice

or British descent, results in the creation of an additional
site. Surprisingly, the individual heterozygous for this

NlaIII site at exon 12. These putative mutations appear
mutation does not produce detectable levels of the 365-

to be rare in the general population, since restriction-
bp abnormal band and possesses the same homozygous

enzyme analysis of 100 control individuals did not detect
haplotype as the individual homozygous for this muta-

the NlaIII site created by the nucleotide change. Further-
tion.

more, individuals with the splice-site substitution at
Population Frequencies of Select WD Mutationsexon 12 share a very similar modification of a unique

haplotype. We used an RDBH procedure to determine popula-
tion frequencies for seven disease mutations (table 1).Two nonsense mutations, present in two affected indi-
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Figure 1 RT-PCR analysis for splice-site mutations. a, Genomic structure of exons 11–14 of the WD gene. PCR amplification was
performed in two successive rounds. The primers used for first-round PCR (primers 3327 and 3313) and the nested primers used for a second
round of PCR (primers 3354 and 2) are shown above. Controls were included to distinguish transcripts with exon 12 (placental and liver
poly[A/] RNA) and without exon 12 (brain WD cDNA), which frequently is omitted in the brain and the kidney (Petrukhin et al. 1994). The
326-bp product includes exon 12, whereas the 192-bp alternative product lacks exon 12. However, the presence of the ArG splice-acceptor-
site mutation at the invariant 02 position (italicized) produced either a 192-bp product, by skipping exon 12 entirely, or a 365-bp product
with an additional 39 bp (underlined), resulting in the presence of 13 additional amino acids (boldface letters). b, Gel electrophoresis of
fragments produced by RT-PCR in samples from individuals homozygous (lanes 2 and 6) or heterozygous (lanes 3 and 7) for this mutation
and in samples from normal individuals (lanes 4 and 8), from two different mRNA preparations. The sizes of the fragments were determined
by comparison with a 100-bp ladder standard (lanes 1 and 5). c, Comparison of 3� wild-type and cryptic splice-acceptor-site sequences of exon
12 of the WD gene with the consensus splice-acceptor-site sequence (Krawczak et al. 1992). Identical base-pair sequences between the wild-
type and the cryptic sequences are italicized and boldface.

The most common WD mutation, His1069Glu, ap- hepatic copper levels, and the presence of Kayser-
Fleischer (KF) rings. In table 4 we evaluate our Northpeared in very similar frequencies in the North Ameri-

can, Russian, and Swedish samples but was not detected American population for these five clinical indices of
WD. This sample included 118 WD patients and in-among the eight unrelated patients from Sicily. The exon

15 frameshift mutation (CCC2337rCC) was relatively cluded 30 individuals homozygous for the His1069Gln
mutation and 23 heterozygous for the mutation. Thecommon in the North American and Swedish samples

(Waldenström et al. 1996) and quite common in the His1069Gln mutation is the only WD mutation that
occurs with sufficient frequency to allow the evaluationRussian sample (found in 19% of WD chromosomes)

but also was undetected in the small Sicilian sample. A of multiple individuals who are homozygous for the mu-
missense mutation (Asn1270Ser) in the hinge domain tation. As shown in table 4, individuals homozygous for
accounted for 2 of 16 disease alleles in the Sicilian the most common mutation (n Å 20) had an average
sample. age of onset of 20 years, compared with 15.4 years for

heterozygotes (n Å 16) and 17.2 years for the entire
Genotype/Phenotype Correlation sample. Homozygous individuals showed a nearly equal

incidence of hepatic and neurological presentation.In order to evaluate the functional significance of WD
These findings are in agreement with those reported else-mutations, we searched for correlations between geno-
where (Thomas et al. 1995). Ceruloplasmin activity lev-types and several phenotypic manifestations of the ill-
els for our entire sample (n Å 79) were within the rangeness, including age of onset, neurological versus hepatic

onset of the illness, the level of ceruloplasmin activity, of 0–32 mg/dl, with a mean value of 9.4 mg/dl, and
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Table 4

Evaluation of Genotype/Phenotype Correlation among North American WD Patients

Average Age No. of Patients with Types Ceruloplasmin-Level Hepatic Copper–Level No. of
at Onset (n) of Clinical Presentation Range/Mean (n)b Range/Mean (n) Patients with

Patient Samplea n [years] Evaluated (n) [mg/dl] [mg/gdw] KF Rings (n)

North American 118 17.6 (65) 37 hepatic, 24 neurological, 0–32/9.4 (79) 156–1530/819.9 (30) 58 (79)
4 hepatic/neurological,d 2
hepatic/renald (67)

North American His1069Gln 30 20 (20) 10 hepatic, 8 neurological, õ1–25.7/10.12 (25) 40–1467/609.3 (11) 19 (24)
homozygotes 2 hepatic/neurolocicald

(20)
North American His1069Gln 23 15.4 (16) 6 hepatic, 10 neurological 0–20.4/9.77 (17) 281–743/541.5 (4) 14 (17)

heterozygotes (16)

a Described in Subjects, Material, and Methods.
b Measured by assaying of oxidase activity, by use of the substrate paraphenylenediamine.
c Determined by use of atomic absorption spectrophotometry (see Subjects, Material and Methods).
d More than one type of clinical presentation was seen in these affected individuals.

hepatic copper levels (n Å 30) were within the range of rations (data not shown). Each of the 10 ATPase activi-
ties (5 with copper and 5 without copper) represents the156–1,530 mg/gdw, with a mean value of 819.9 mg/gdw.

The normal range for ceruloplasmin and for hepatic average of three replicate assays. Estimates of copper-
stimulated ATPase activities in each lymphoblast frac-copper is 20–35 mg/dl and õ250 mg/gdw, respectively.

For these two clinical indices, the mean values for tion are shown (fig. 2). As predicted, the cell lines from
the four WD patients each demonstrated reduced activ-His1069Gln homozygotes and heterozygotes do not dif-

fer significantly from the entire sample. Although for ity, compared with the normal cell line.
most other mutations there were too few individuals for
the derivation of significant genotype/phenotype correla- Discussion
tions, the Asn1270Ser mutation represented 61% of all

In our analysis of 109 WD patients from Northmutations in the Costa Rican sample. This cohort has
America, we show that 38% of WD chromosomes har-a very high incidence of fulminant WD cases; however,
bor the His1069Gln mutation, while an additional fivethe correlation between phenotype and genotype re-
mutations account for Ç8% of all disease mutations.mains unclear, since the single Sicilian individual with
We present evidence that a rare mutation, initially de-this genotype does not show signs of fulminant WD.
tected in a Sicilian population, accounts for 61% of allOf the 79 individuals from our North American cohort
WD mutations in Costa Rica. The present-day popula-tested for the presence of KF rings, 58 had corneal cop-
tion in Costa Rica is derived largely from a small numberper deposits, regardless of which WD mutation they

possessed. A majority of the 21 individuals who did not
manifest KF rings received chelation therapy at a young
age, owing to early diagnosis.

Preliminary Functional Study of WD Mutations
We performed a preliminary assay to evaluate the

effects of four independent WD mutations on copper-
stimulated ATPase activity in lymphoblasts. Crude
membrane preparations were isolated from lymphoblas-
toid cell lines derived from four WD patients and from
one normal individual. In figure 2, we see that the cop-
per-stimulated ATPase activity from normal
lymphoblast membrane fractions is low, Ç0.08 nmole Figure 2 Loss of copper-stimulated ATPase activity in
Pi/mg protein/hour, or slightly ú20% of total ATPase lymphoblasts from WD patients. Copper-stimulated ATPase activity

was measured relative to the lymphoblast cell number derived fromactivity under conditions designed to inhibit endogenous
normal and from affected individuals. Patient 5369 is homozygousnon–copper stimulated ATPase activity. This result is
for the Asn1270Ser mutation. Patient 5476 is homozygous for a Cconsistent with our western blot analysis of lymphoblast
insertion at position 2304 in exon 8. Patient 5250 is homozygous for

membrane preparations and also with a more sensitive the most common mutation, His1069Glu, in exon 14. Patient 5331
assay using RT-PCR, which confirmed the presence of is heterozygous for a T insertion at position 2487 in exon 16. Error

bars are indicated.the WD mRNA transcripts in lymphoblast RNA prepa-
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Figure 3 Summary of all published WD mutations in exonic and splice-site-junction sequences (Bull et al. 1993; Tanzi et al. 1993; Figus
et al. 1995; Thomas et al. 1995; Loudianos et al. 1996; Waldenström et al. 1996; Kemppainen et al. 1997).

of founding families dating back to the eighteenth cen- individual in a previous study (Thomas et al. 1995),
differed in location from the deletion that we also de-tury (Freimer et al. 1996). Because the Sicilian and Costa

Rican mutations appear on identical, presumptive ances- tected in a British individual, by 2 bp. The Tm regions
encoded by exons 6–9 and 19–20 are also sites fortral haplotypes, we speculate that the mutation origi-

nated in southern Europe and was transported to Costa frequent mutation. Twelve of our 27 mutations map to
these regions of the gene and most likely affect bothRica with the founding families.

We report a total of 27 mutations in our WD sam- copper transport across the membrane and copper-de-
pendent phosphorylation of the enzyme, by ATP, asple—7 frameshift, 16 missense, 2 nonsense, and 2

splice-site mutations. The population-frequency values shown elsewhere for the sarcoplasmic reticulum Ca2/-
ATPase (Clarke et al. 1990).for these mutations confirm that the spectrum of WD

mutations consists of a small number of relatively fre- To discriminate between polymorphism and muta-
tion, we analyzed a few mutations in the context ofquent mutations, with a large number of rarely oc-

curring mutations. Among the Ç66 mutations published their conservation among various copper ATPases from
humans, mouse, rat, yeast, and bacteria. A methionine-to date (fig. 3) (Bull et al. 1993; Tanzi et al. 1993; Figus

et al. 1995; Shimizu et al. 1995; Thomas et al. 1995; to-valine amino acid substitution in Tm loop 4, identi-
fied in a homozygous American individual, also wasLoudianos et al. 1996; Waldenström et al. 1996; Kemp-

painen et al. 1997), several amino acid residues have reported by another group (Thomas et al. 1995). Al-
though we failed to detect this alteration in 100 controlbeen the target of multiple mutations. In particular, the

arginine residue at position 778 has been substituted individuals, we suspect that this change actually may be
a polymorphism, since valine residues have been foundwith leucine (Thomas et al. 1995), glycine (Figus et al.

1995), or tryptophan (this study), in different affected at this position in prokaryotic copper-transporting
ATPases from Proteus mirabilius and Synechococcus sp.individuals. Similarly, a glycine residue at position 1266

in the highly conserved hinge region has been replaced (Genbank U42410 and U04356, respectively). We and
others (Figus et al. 1995) have reported a seeminglywith lysine (Thomas et al. 1995) or valine (this study).

In addition, the glutamic acid residue at position 1064 conservative glycine-to-alanine substitution at position
626. Analysis of this residue, among eight copper-trans-has been exchanged for an alanine (this study) or a lysine

(Figus et al. 1995) residue. Also, adjacent base pairs porting P-type ATPases (three prokaryotic and five eu-
karyotic), has shown this glycine residue to be conservedwere deleted from the third copper-binding domain in

unrelated individuals of Middle Eastern decent. Like- in all eight copper ATPases (data not shown). Therefore,
we have classified this substitution as a mutation.wise, a 2-bp deletion in Tm loop 7, reported in a British
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The WD and MNK genes are distinguished among et al. 1995), and 2.0 for 22 unrelated Swedish families
(Waldenström et al. 1996). One explanation for thesemetal-transporting ATPases by the presence of six highly

homologous, putative copper-binding motifs. DNA-se- findings may be that admixture accounts for the devia-
tion from HW equilibrium. Alternately, the skew to-quence comparison of the WD and MNK motifs indi-

cates that the 600 amino acid N-terminal segment of ward homozygotes may be an artifact of detection or
may be owing to the fact that other ‘‘mild’’ WD muta-these genes arose via gene duplication events that pre-

ceded the splicing of this segment with an ATPase core, tions in combination with the relatively mild
His1069Gln mutation do not produce typical WD.forming the common ancestral molecule for both genes.

Recently, the rat homologue to the human WD gene A number of splice-site mutations have been reported
for both the WD and MNK genes (Das et al. 1994; Kalerwas shown to lack the fourth copper-binding motif (Wu

et al. 1994), suggesting that the duplicated segments are et al. 1994; Shimizu et al. 1995; Thomas et al. 1995;
Loudianos et al. 1996). In the case of the MNK gene,functionally redundant. Consistent with this interpreta-

tion, no missense mutations have been reported in any ‘‘mild’’ splice-site mutations have been described, which
apparently allow for the production of some functionalof the six copper-binding motifs of the WD or the MNK

genes. As shown in figure 3, all mutations in this segment protein and which lead to the presentation of OHS, or
cutis laxa, a mild phenotype characterized by hyperelas-of the gene are due to frameshifts that predictably would

lead to production of a truncated protein. A number of tic and bruisable skin, hernias, bladder diverticulae, hyp-
erextensible joints, varicosities, and multiple skeletal ab-MNK patients were reported to harbor splice-junction

or missense mutations in the 77-bp exon located be- normalities (Das et al. 1995). These mild mutations may
arise predominantly from aberrations at the 5� donortween the sixth copper-binding site and the first Tm

region (Das et al. 1994). We report two WD mutations splice junctions, whereas 3� acceptor-junction mutations
are more likely to lead to MNK (Das et al. 1994; Kalerin this region. At least two studies indicate the presence

of intronic or regulatory mutations among their WD et al. 1994). Two groups have reported splice-site muta-
tions from the 3� end of exon 5 of the WD gene, whichpatient sample. In a study of Swedish WD patients, 5

of 44 WD chromosomes did not harbor detectable muta- produce very different WD phenotypes. In one case, it
appeared that the recognition of a cryptic splice site ledtions in any of the 21 known exons examined by DNA

sequencing (Waldenström et al. 1996). In studies of WD to production of a truncated protein, in a severely af-
fected Indian patient (Thomas et al. 1995), whereas,patients of Sardinian or Mediterranean descent, 55% of

all WD chromosomes harbored no detectable mutations in another case, exon skipping apparently produced a
partially functional protein and a mild disease presenta-in the 21 exons (Figus et al. 1995; Loudianos et al.

1996). tion (Shimizu et al. 1995).
We have described a splice-site mutation that forcesThe most common WD mutation, His1069Gln, ap-

pears frequently (10%–40%) in diverse populations, in- the recognition of a cryptic splice site, which then pro-
duces a protein with 13 additional amino acid residues.cluding those of North America, Great Britain, Holland,

Sweden, continental Italy (but not Sardinia or Sicily), This extra peptide segment presumably would alter the
protein tertiary structure or would interfere with theand several Mediterranean countries. The mutation oc-

curs on the same haplotype in each of the population flanking cation channel and/or the transduction domain,
thereby hindering protein function. The individual withsamples, indicating that the mutation is relatively old.

We found a statistically significant skewing of this mutation was diagnosed at age 14 years with evi-
dence of both neurological symptoms (swallowing diffi-His1069Gln mutations toward the homozygous condi-

tion, in our sample. In the North American population, culties) and liver disease (abnormal transaminases). Lev-
els of functional ceruloplasmin and hepatic copper were83 of 218 disease alleles result from the His1069Gln

mutation. Of the 83 mutations, 60 disease alleles were 1 mg/dl and 1,531 mg/gdw, respectively, and KF rings
were not present. In comparison, the individual hetero-found in homozygous individuals (i.e., 30 individuals),

whereas only 23 individuals were heterozygous for the zygous for the splice-site mutation, diagnosed at age 17
years, presented with severe neurological manifesta-mutation. From Hardy-Weinberg (HW) equilibrium

predictions, the ratio of heterozygotes to homozygotes, tions, KF rings, and functional ceruloplasmin levels õ1
mg/dl. Furthermore, detectable levels of the aberrantwithin the population, would be 2pq/q2 Å 2(.62)(.38)/

(.38)2 Å 3.26. Thus, approximately three times as many transcript were not produced, even though the splice-
site mutation occurs on the same haplotype in both theheterozygous individuals as homozygous individuals

would be predicted for this mutation. From the North homozygous and the heterozygous individuals. One pos-
sibility is that an in trans competition for transcriptionAmerican population, we calculated a ratio of 0.77 het-

erozygotes to homozygotes. Other studies appear to sup- factors occurs such that the wild-type sequence is greatly
preferred to the mutant sequence. Alternatively, in theport this observation, by the inclusion of ratios of 0.6

for a study of Dutch WD families (Houwen et al. 1995), heterozygous individual, the homologue with the splice-
site mutation may harbor additional polymorphisms1.8 for families of primarily European origin (Thomas
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Das S, Levinson B, Whitney S, Vulpe C, Packman S, Gitschierthat reduce the efficiency of the cryptic splice-site se-
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